
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Use of Backtracking Algorithm with Constraint

Propagation for Solving Dot Connect Puzzle

Angelina Efrina Prahastaputri - 13523060

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: efrinaprahastaputri@gmail.com , 13523060@std.stei.itb.ac.id

Abstract—In order to solve Dot Connect puzzle, a player must

connect all open dots on the board without the connections

overlapping. This requires player to consider obstacles or

constraints while maintaining to connect all the open dots. This

paper explores the use of backtracking algorithm with constraint

propagation for solving Dot Connect Puzzle. This paper will

explore each aspect of backtracking algorithm and how

backtracking algorithm works on generating the solution to the

challenging Dot Connect Puzzle with constraint propagation. The

result of this research aims to get a better understanding about

backtracking algorithm and its advantages on solving puzzle

such as Dot Connect Puzzle.

Keywords—Backtracking Algorithm, Constraint Propagation,

Dot Connect Puzzle, Solution

I. INTRODUCTION

In a world where different varieties of games exist with
varying genres, ranging from simple and relaxing ones to
complex and challenging ones, puzzle games are still
incredibly popular, consistently maintaining high ranking
among the top genres of games. Puzzle games are beloved for
their compelling logic challenges, therefore building problem-
solving skills and improving cognitive abilities of the players.
They challenge the players to think critically, foresee
consequences, and manage a complex set of rules of constraint
to achieve the goal of the game. A particular category of the
puzzle games is path-finding puzzle or popularly known as
“connection” puzzle. One of which puzzle will be discussed in
this paper.

The Dot Connect puzzle is just like the classic connect the
dots game but without number or structures to guide the player.
Starting from the initial dot, the player must connect all the
dots on the board. Connections are made vertically,
horizontally, and without overlapping until all the dots on the
board are connected [6]. Besides the initial dot, there are also
barriers that can limit connections between certain dots. While
this puzzle certainly has simpler rules than other connect the
dots game, solving it requires the player to have significant
foresight and logical deduction, as a single early mistake can
make completing the puzzle quite difficult because the player
has to rebuild the path that follows the rule and satisfy the goal
of this puzzle. That’s why the complexity of this puzzle
intrigues the author to use it as a study case about the

implementation of certain algorithm strategy for automated
solving in this paper.

The author chose the title “Use of Backtracking Algorithm
with Constraint Propagation for Solving Dot Connect Puzzle”
not only because it is one of the popular categories of puzzle
game and is challenging to solve, but also because the puzzle’s
nature directly lends itself to a computational solution that can
be achieved by trial-and-error approach. It is important to
explore algorithm strategies that can navigate through vast
number of possible paths to find the actual solution of the
puzzle efficiently. This paper will explore the use of
backtracking algorithm, one of algorithm strategies for
exploring all possible candidates of the solution, with
constraint propagation, a method to prune the search space and
avoid dead ends intelligently. Through implementation and
analysis of it for automated solving, the author hopes that this
paper can provide a better understanding of the backtracking
algorithm with constraint propagation and its powerful
application in solving complex and constraint-based logic
puzzles.

II. THEORETICAL BASIS

A. Backtracking Algorithm

Backtracking algorithm can be viewed as: a phase inside

Depth First Search algorithm, or a systematic and structured

problem-solving technique [3]. In contrast to exhaustive

search algorithms that explore and evaluate every single

possible solution, backtracking algorithm works more

efficiently. Whereas in the backtracking algorithm, only

choices that lead to a solution are explored, choices that don’t

lead to a solution are no longer considered [3]. This algorithm

is first introduced by D. H. Lehmer in 1950.

There are several common properties in a backtracking

algorithm:

1. Solution space, all possible solutions of the problem,

written as a set of vectors with n-tuple

2. Generator function, a function that generates a value

xk that is a component of the solution vector

3. Bounding function, a boolean function that returns

true whenever a set of value leads to a solution and

not violating any constraints [4]

mailto:efrinaprahastaputri@gmail.com
mailto:13523060@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Backtracking algorithm process can be visualized as a

search within a state-space tree. All possible solutions of the

problem are called the solution space [3]. The solution space is

organized into a rooted tree structure [3]. Each node in this

tree represents a specific state while each edge in this tree

represents certain choices. All paths from root to leaf represent

possible solutions and they create the solution space.

A backtracking algorithm works by recursively exploring

all possible solutions to the problem [1]. The core of

backtracking algorithm involves generating solution

components step-by-step. The solution is sought by generating

state nodes to create a path from root to a leaf [3]. This

algorithm traverses the tree using a Depth First Search

approach. It starts at root node and then explores as far as

possible along each branch before backtracking. During this

traversal, nodes that have been generated are called “live

nodes” and the live node that is currently being expanded is

called the “expand node” or E-node for short [3]. If the path

currently being formed doesn’t lead to a solution, then the E-

node is “killed” and becomes a “dead node”. This “killing

process” uses the algorithm’s bounding function so that the

dead node can no longer be considered in the search process

thereby pruning its child nodes. If the path currently being

formed ends with a dead node, the search backtracks to its

parent node to explore other alternatives and continue to

generate other child nodes [3]. The search stops when it finally

reaches the “goal node” or the solution to the problem.

Figure 2.1 Backtracking Algorithm

Source: https://www.w3.org/2011/Talks/01-14-steven-

phenotype/

Figure 2.2 Pseudocode for Recursive Backtracking Algorithm

Source: https://www.w3.org/2011/Talks/01-14-steven-

phenotype/

B. Constraint Propagation

A key technique for efficiently solving problems in

constraint programming is constraint propagation. Constraint

propagation is the process of communicating the domain

reduction of a decision variable to all the constraints that are

stated over this variable [2]. When the possible set of values

for one variable is reduced, this information is used by other

related constraints to see if they can further reduce the

domains of the variables they involve. This process can result

in more domain reductions [2].

The purpose of constraint propagation is to reduce the

domains of variables, potentially leading to the discovery of a

solution or the identification of a failure [2]. This can

drastically shrink the search space that a solver like

backtracking algorithm needs to explore. The process

continues iteratively until a stable state is reached where no

more domains can be reduced. An empty domain during the

initial constraint propagation means that the model has no

solution [2]. This allows a solver like backtracking algorithm

to identify whether the path is impossible or doesn’t lead to

the solution early without having to perform longer search.

C. Dot Connect Puzzle

The Dot Connect puzzle has various difficulties ranging

from “Beginner” to “Ludicrous” which difficulty increases

based on the size of the puzzle board and the number of

barriers on the puzzle board. The puzzle board consists of a

grid of dots that must all be connected by a single continuous

line from the initial dot. The puzzle is solved when all open

dots on the puzzle board are connected, no specific ordering or

correct path is required. Connections are made vertically or

horizontally, and without overlapping [6]. The puzzle board

also contains barriers or blocked cells which the path cannot

pass through.

Figure 2.3 Dot Connect Puzzle Configuration

Source: https://api.razzlepuzzles.com/dot_connect

Figure 2.4 Solved Dot Connect Puzzle

Source: https://api.razzlepuzzles.com/dot_connect

https://www.w3.org/2011/Talks/01-14-steven-phenotype/
https://www.w3.org/2011/Talks/01-14-steven-phenotype/
https://www.w3.org/2011/Talks/01-14-steven-phenotype/
https://www.w3.org/2011/Talks/01-14-steven-phenotype/
https://api.razzlepuzzles.com/dot_connect
https://api.razzlepuzzles.com/dot_connect

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Dot Connect puzzle can be classified as a Constraint

Satisfaction Problem (CSP). The problem can be represented

as finding a valid sequence of moves, where the solution is a

vector of positions P = (p1, p2, …, pn) with n being the total

number of dots on the puzzle board. The core constraints that

this sequence must satisfy are:

1. Each position pi in the sequence must be adjacent to

the previous position pi-1

2. No position can appear more than once in the

sequence because the line that connects the dots

cannot overlap with each other

3. The path must stay within the puzzle board boundaries

and avoid any predefined barriers

4. The final path must contain every single open dot on

the puzzle board

A challenging aspect in solving Dot Connect puzzle is that

a locally valid move may not lead to a global solution. A move

that satisfies all immediate constraints can unintentionally

“trap” the line, cutting off other regions of the puzzle board

hence making it impossible to connect the remaining dots.

This requires a strategy that can foresee or recover from such

dead ends.

D. Backtracking Algorithm with Constraint Propagation in

Dot Connect Puzzle

Backtracking is one of the core algorithms to solve Dot

Connect Puzzle since it fits the criteria of a Constraint

Satisfaction Problem. Backtracking algorithm is used for

solving Dot Connect Puzzle by recursively finding all possible

solutions that satisfy the constraint that has been stated

previously. This algorithm explores all possible paths and

when a path violates a constraint or hits a dead end, it

backtracks to the last decision point to try alternative path. By

using constraint propagation that prune invalid paths early, the

search process is made efficient.

First, the puzzle board can be represented as a 2D array or

a matrix where each cell has one of these following states:

“empty”, “barrier”, or “visited”. The solution is an ordered

sequence of coordinates or vector of positions P = (p1, p2, …,

pn) with n being the total number of dots on the puzzle board

and pi is the coordinate of the i-th dot in the path.

The core of solving Dot Connect puzzle using

backtracking algorithm is the recursive process. The first step

in the recursive call is to check the termination condition. A

complete solution is found when the length of the current path

is equal to the total number of open dots on the puzzle board.

If this condition is met, then the algorithm has found a valid

path and can terminate the process. If not, the algorithm

iterates through all adjacent neighbors from the current dot’s

position. For each neighbor, bounding function is applied to

check if the move is valid or not. The bounding function

directly implements the puzzle’s constraint that has been

stated previously. If a neighbor is deemed valid by the

bounding function, the algorithm commits to the move, adding

the chosen neighbor to the current path and updating its state

to “visited”. Then, a recursive call is made with the new

current path and new current position (the chosen neighbor

position). If this call returns true, it means that a complete

solution is found and this success is passed up the call stack. If

this call returns false, it means that the path from the chosen

neighbor led to a dead end. The algorithm then backtracks or

undoes the move by removing the neighbor from the current

path and changing its state back to “empty” then continues to

iterate to try the next neighbor. If for all neighbors have been

tried and there is no path found, it means the current position

itself is a dead end and the algorithm will bactrack to the

previous level.

Constraint propagation enhances the search process of the

backtracking algorithm by using logic to make deductions that

prune the entire branches of the search tree before they are

even explored. If making a move from, let’s say position A to

position B, creates a closed-off region of unvisited dots that

are now disconnected from the rest of the puzzle, that move is

deemed invalid. This is because the single continuous line

wouldn’t be able to enter and fill this region. By applying this

propagation rule, the algorithm doesn’t just check the validity

of its immediate next step but also looks ahead at the

consequences of that step by pruning paths that are doomed to

fail much earlier, thereby significantly improving

performance.

III. IMPLEMENTATION

The author focuses on the implementation of backtracking
algorithm which has been stated previously. Firstly, we will
look at the way Dot Connect puzzle is represented in the
implementation. Besides the main algorithm, there are three
main building components: Point, PuzzleBoard, and
DotConnect (or the main program).

Figure 3.1 Point.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

 The object Point represents each cell of the puzzle board
and has attributes: row and column that shows the position or
coordinates of said cell.

https://github.com/angelinaefrina/MakalahStima_13523060

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

(a)

(b)

Figure 3.2 PuzzleBoard.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

 The object PuzzleBoard represents the puzzle board od Dot
Connect Puzzle and has attributes: row size, column size, 2D
array that contains the cells, total open dots on the puzzle
board, and the starting/initial dot position. The function
isDalamPapan determines whether or not a dot’s position is
valid (not outside the puzzle board), the function isBarrier
checks whether a dot is a barrier which in this implementation
a barrier is represented as “X”, and the function printPapan
prints the state of current puzzle board with the current path
that are being formed or has been formed.

Figure 3.3 DotConnect.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

 The DotConnect class in this implementation is where the
main program runs. Firstly, it will ask the user to input the file
path of a .txt file that contains the information of the puzzle
board, then it will read the puzzle board and create a new
PuzzleBoard object out of it. Afterwards, it will call the solver
function and if a solution is found, it will output the solution.

 Next, we will look at the main backtracking algorithm that
consists of three major components: constraint propagation,
bounding function, and the solver (contains generator function
and solution space).

Figure 3.4 Constraint Propagation in Solver.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

The constraint propagation used for enhancing the
automated solving for Dot Connect puzzle is implemented in
the isTrappedRegionCreated function. It restricts any move to
create trapped region which makes the line can’t establish any
connection with dots that are in the trapped region. Since the
puzzle requires a single continuous line that connects all the
dots, any move that create such trapped regions is guaranteed
to lead to failure.

https://github.com/angelinaefrina/MakalahStima_13523060
https://github.com/angelinaefrina/MakalahStima_13523060
https://github.com/angelinaefrina/MakalahStima_13523060

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 3.4 Bounding Function in Solver.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

 The bounding function is implemented in the isMoveValid
function that checks if the move violates any constraints or not.
The constraints: is the cell outside the puzzle board, is the cell a
barrier, is the cell has been visited (to avoid the path from
overlapping), and is the cell violates the constraint propagation.

Figure 3.5 Backtracking Algorithm in Solver.java

Source:
https://github.com/angelinaefrina/MakalahStima_13523060

 The main backtracking algorithm firstly will add the current
dot into the solution path; this means that the starting point will
always be the first dot in the solution sequence. It will then
check the current dot’s neighbors (generator function)
iteratively. If a neighbor is deemed valid by the bounding
function, it will continue to find other dots that can be added to
the solution sequence recursively. If no valid path found from
the current dot, the algorithm will backtrack to the previous
level and try for the next neighbor. If the length of the solution
sequence equals the total open dots on the puzzle board, then a
complete solution is found.

IV. ANALYSIS

The author conducts a test to see if the implemented
backtracking algorithm with constraint propagation able to
solve Dot Connect puzzle efficiently. First, we will see the
difference that constraint propagation makes on the
backtracking algorithm using the test case in Figure 4.1.

Figure 4.1 Test Case 1

Source: Author’s Personal Archive

The test case in Figure 4.1 consists of two components: the
first line consecutively contains the row size and the column
size of the puzzle board, followed by the puzzle board itself.
The “.” represents open dots on the puzzle board that must be
connected, the “X” represents barriers, and the “S” represents
the starting/initial dot.

(a) Without Constraint Propagation

(b) With Constraint Propagation

Figure 4.2 Difference Between Searching Time for
Backtracking Algorithm with and without Constraint

Propagation

Source: Author’s Private Archive

As we see in Figure 4.2, the backtracking algorithm
successfully found a complete solution given the test case in
Figure 4.1. However, there is a searching time difference
between Figure 4.2 (a) and Figure 4.2 (b) and it appears in
Figure 4.2 (b) that the backtracking algorithm performance is
better than Figure 4.2 (a) with a significant 17 millisecond
faster. This proves that constraint propagation indeed enhances
the performance of the backtracking algorithm.

https://github.com/angelinaefrina/MakalahStima_13523060
https://github.com/angelinaefrina/MakalahStima_13523060

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Second, we will see how the implementation handles much
more complex puzzle configurations by increasing the size of
the puzzle board.

(a) 6 x 10 Puzzle Board

(b) 8 x 12 Puzzle Board

(c) 10 x 12 Puzzle Board

(d) 10 x 15 Puzzle Board

Figure 4.3 Difference Between Searching Time for Various
Size of Puzzle Board

Source: Author’s Private Archive

As we see in Figure 4.3, the backtracking algorithm
successfully found a complete solution given the test case with
various sizes of puzzle board. For bigger puzzle board size, the
algorithm took longer to search for the solution path. The
reason behind this lies in the fundamental nature of the
problem and the search algorithm itself.

When the puzzle board’s size increases, the number of dots
that must be visited also increases. This causes the depth and
the potential number of branches in the state-space tree to grow
exponentially. For a board with n dots, the theoretical number
of paths to explore can be in the order of bn where b is the
branching factor or the number of available moves at each step,
which in this puzzle is at most 4. Increases in number of open
dots doesn’t simply increase the workload by some percentage,
rather by many orders of magnitude, often referred to as
“combinatorial explosion”. Combinatorial explosion occurs
when a huge number of possible combinations are created by
increasing the number of entities which can be combined [5].
This is the main reason why the search process takes
significantly longer for larger puzzle board.

The Dot Connect puzzle is a variation of the Hamiltonian
Path Problem, thus is classified as NP-complete. It means,
there is no known algorithm that can solve every instance of
this problem in polynomial time. The worst-case time
complexity for the backtracking algorithm that implemented is
exponential. The complexity is formally expressed as O(bn)
where n is the number of dots to visit, and b is the branching
factor which in this puzzle is at most 4.

This backtracking algorithm can perform better thanks to
the constraint propagation that is implemented. It is able to
identify impossible solutions early by pruning the state-space
tree, so the algorithm doesn’t waste time exploring other paths
that are guaranteed to fail. However, even with this intelligent
pruning, the fundamental nature of the problem remains
exponential which is why the search time still increases
significantly with larger puzzle sizes.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

V. CONCLUSION

This paper discussed how backtracking algorithm with
constraint propagation can be efficiently used in solving Dot
Connect puzzle. The implementation successfully proved that
backtracking algorithm capable of finding complete solutions
for various puzzle configurations and constraint propagation
capable of enhancing the backtracking algorithm performance.
The backtracking algorithm systematically explores the state-
space tree recursively, extending the path from one dot to its
next, eventually finding the solution path. The implementation
of constraint propagation “trapped region rule” elevates the
backtracking algorithm by actively identifying and pruning
branches of the search tree that would lead to impossible paths.

While the fundamental worst-case time complexity remains
exponential due to the Hamiltonian Path Problem, this project
shows that intelligent heuristics can make the problem tractable
for a wide range of complex instances. The algorithm’s ability
to solve progressively larger puzzles with increased time
highlights the direct correlation between the puzzle’s size and
its computational complexity

Future enhancements could involve exploring more
advanced heuristics and other constraint propagations.
Additionally, comparing this algorithm’s performance with
other algorithms could provide valuable insight into broader
applications of these algorithms.

VIDEO LINK AT YOUTUBE

https://youtu.be/2W2yAGzTjns?si=EVCuhEaTv1eEEn_f

ACKNOWLEDGMENT

The author would like to express their gratitude to several
parties that helped the making of this paper. First and foremost,
sincere thanks to God for guiding the author through the entire
process of making this paper from learning, researching, and
writing, until eventually this paper is complete. The author also
acknowledges the immense support and guidance from the
lecturer of IF2211 Algorithm Strategy, Mrs. Nur Ulfa
Maulidevi and Mr. Rinaldi Munir, that has significantly helped
the author enrich their knowledge. Special thanks also to the
author’s family, friends, and all the ITB Informatics students
for the unwavering support throughout the entire semester.

Through this paper, the author hopes it can bring more
knowledge for the author and for the readers on better
understanding about the use of backtracking algorithm with
constraint propagation for solving Dot Connect Puzzle.

REFERENCES

[1] GeeksforGeeks. (2024). Backtracking Algorithms.
https://www.geeksforgeeks.org/dsa/backtracking-algorithms/ accessed
on June 24, 2025

[2] IBM. (2023). Constraint propagation. Dalam IBM CP Optimizer 22.1.0.
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizer-constraint-
propagation accessed on June 24, 2025

[3] Munir, Rinaldi. (2024). “IF2211 Strategi Algoritma – Semester II Tahun
2024/2025”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/stmik.htm
accessed on June 2, 2025.

[4] Pradipta, Nayotama. (2022). “Implementation of Backtracking
Algorithm in Minesweeper”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Makalah/Makalah-IF2211-Stima-2022-K2%20(30).pdf accesed on
June 2, 2025.

[5] Principia Cybernetica Web. (2010). Combinatorial Explosion.

https://web.archive.org/web/20100806122506/http://pespmc1.vub.ac.be/
ASC/COMBIN_EXPLO.html accessed on June 24, 2024.

[6] Razzle Puzzles. (n.d.). Dot Connect.

https://api.razzlepuzzles.com/dot_connect accessed on June 22, 2025.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Angelina Efrina Prahastaputri 13523060

https://youtu.be/2W2yAGzTjns?si=EVCuhEaTv1eEEn_f
https://www.geeksforgeeks.org/dsa/backtracking-algorithms/
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizer-constraint-propagation
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizer-constraint-propagation
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/stmik.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Makalah/Makalah-IF2211-Stima-2022-K2%20(30).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Makalah/Makalah-IF2211-Stima-2022-K2%20(30).pdf
https://web.archive.org/web/20100806122506/http:/pespmc1.vub.ac.be/ASC/COMBIN_EXPLO.html
https://web.archive.org/web/20100806122506/http:/pespmc1.vub.ac.be/ASC/COMBIN_EXPLO.html
https://api.razzlepuzzles.com/dot_connect

